pub struct GaussianNb<F: PartialEq, L: Eq + Hash> { /* private fields */ }
Expand description
Fitted Gaussian Naive Bayes classifier.
See GaussianNbParams for more information on the hyper-parameters.
§Model assumptions
The family of Naive Bayes classifiers assume independence between variables. They do not model moments between variables and lack therefore in modelling capability. The advantage is a linear fitting time with maximum-likelihood training in a closed form.
§Model usage example
The example below creates a set of hyperparameters, and then uses it to fit a Gaussian Naive Bayes classifier on provided data.
use linfa_bayes::{GaussianNbParams, GaussianNbValidParams, Result};
use linfa::prelude::*;
use ndarray::array;
let x = array![
[-2., -1.],
[-1., -1.],
[-1., -2.],
[1., 1.],
[1., 2.],
[2., 1.]
];
let y = array![1, 1, 1, 2, 2, 2];
let ds = DatasetView::new(x.view(), y.view());
// create a new parameter set with variance smoothing equals `1e-5`
let unchecked_params = GaussianNbParams::new()
.var_smoothing(1e-5);
// fit model with unchecked parameter set
let model = unchecked_params.fit(&ds)?;
// transform into a verified parameter set
let checked_params = unchecked_params.check()?;
// update model with the verified parameters, this only returns
// errors originating from the fitting process
let model = checked_params.fit_with(Some(model), &ds)?;
Implementations§
Source§impl<F: Float, L: Label> GaussianNb<F, L>
impl<F: Float, L: Label> GaussianNb<F, L>
Sourcepub fn params() -> GaussianNbParams<F, L>
pub fn params() -> GaussianNbParams<F, L>
Construct a new set of hyperparameters
Trait Implementations§
Source§impl<F: Clone + PartialEq, L: Clone + Eq + Hash> Clone for GaussianNb<F, L>
impl<F: Clone + PartialEq, L: Clone + Eq + Hash> Clone for GaussianNb<F, L>
Source§fn clone(&self) -> GaussianNb<F, L>
fn clone(&self) -> GaussianNb<F, L>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<F, L> NaiveBayes<'_, F, L> for GaussianNb<F, L>where
F: Float,
L: Label + Ord,
impl<F, L> NaiveBayes<'_, F, L> for GaussianNb<F, L>where
F: Float,
L: Label + Ord,
Source§fn joint_log_likelihood(&self, x: ArrayView2<'_, F>) -> HashMap<&L, Array1<F>>
fn joint_log_likelihood(&self, x: ArrayView2<'_, F>) -> HashMap<&L, Array1<F>>
Compute the unnormalized posterior log probabilities.
The result is returned as an HashMap indexing log probabilities for each samples (eg x rows) by classes
(eg jll[class] -> (n_samples,) array)
Source§fn predict_log_proba(&self, x: ArrayView2<'_, F>) -> (Array2<F>, Vec<&L>)
fn predict_log_proba(&self, x: ArrayView2<'_, F>) -> (Array2<F>, Vec<&L>)
Compute log-probability estimates for each sample wrt classes.
The columns corresponds to classes in sorted order returned as the second output.
Source§fn predict_proba(&self, x: ArrayView2<'_, F>) -> (Array2<F>, Vec<&L>)
fn predict_proba(&self, x: ArrayView2<'_, F>) -> (Array2<F>, Vec<&L>)
Compute probability estimates for each sample wrt classes.
The columns corresponds to classes in sorted order returned as the second output.
Source§impl<F: Float, L: Label, D> PredictInplace<ArrayBase<D, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<L>, Dim<[usize; 1]>>> for GaussianNb<F, L>where
D: Data<Elem = F>,
impl<F: Float, L: Label, D> PredictInplace<ArrayBase<D, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<L>, Dim<[usize; 1]>>> for GaussianNb<F, L>where
D: Data<Elem = F>,
impl<F: PartialEq, L: Eq + Hash> StructuralPartialEq for GaussianNb<F, L>
Auto Trait Implementations§
impl<F, L> Freeze for GaussianNb<F, L>
impl<F, L> RefUnwindSafe for GaussianNb<F, L>where
L: RefUnwindSafe,
F: RefUnwindSafe,
impl<F, L> Send for GaussianNb<F, L>
impl<F, L> Sync for GaussianNb<F, L>
impl<F, L> Unpin for GaussianNb<F, L>
impl<F, L> UnwindSafe for GaussianNb<F, L>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<'a, F, R, T, S, O> Predict<&'a DatasetBase<R, T>, S> for Owhere
R: Records<Elem = F>,
O: PredictInplace<R, S>,
impl<'a, F, R, T, S, O> Predict<&'a DatasetBase<R, T>, S> for Owhere
R: Records<Elem = F>,
O: PredictInplace<R, S>,
§impl<F, D, E, T, O> Predict<ArrayBase<D, Dim<[usize; 2]>>, DatasetBase<ArrayBase<D, Dim<[usize; 2]>>, T>> for O
impl<F, D, E, T, O> Predict<ArrayBase<D, Dim<[usize; 2]>>, DatasetBase<ArrayBase<D, Dim<[usize; 2]>>, T>> for O
§impl<F, R, T, E, S, O> Predict<DatasetBase<R, T>, DatasetBase<R, S>> for Owhere
R: Records<Elem = F>,
S: AsTargets<Elem = E>,
O: PredictInplace<R, S>,
impl<F, R, T, E, S, O> Predict<DatasetBase<R, T>, DatasetBase<R, S>> for Owhere
R: Records<Elem = F>,
S: AsTargets<Elem = E>,
O: PredictInplace<R, S>,
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§unsafe fn to_subset_unchecked(&self) -> SS
unsafe fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.