pub trait SingleTargetRegression<F: Float, T: AsSingleTargets<Elem = F>>: AsSingleTargets<Elem = F> {
// Provided methods
fn max_error(&self, compare_to: &T) -> Result<F> { ... }
fn mean_absolute_error(&self, compare_to: &T) -> Result<F> { ... }
fn mean_squared_error(&self, compare_to: &T) -> Result<F> { ... }
fn mean_squared_log_error(&self, compare_to: &T) -> Result<F> { ... }
fn median_absolute_error(&self, compare_to: &T) -> Result<F> { ... }
fn mean_absolute_percentage_error(&self, compare_to: &T) -> Result<F> { ... }
fn r2(&self, compare_to: &T) -> Result<F> { ... }
fn explained_variance(&self, compare_to: &T) -> Result<F> { ... }
}
Expand description
Regression metrices trait for single targets.
It is possible to compute the listed mectrics between two 1D arrays.
To compare bi-dimensional arrays use MultiTargetRegression
.
Provided Methods§
Sourcefn max_error(&self, compare_to: &T) -> Result<F>
fn max_error(&self, compare_to: &T) -> Result<F>
Maximal error between two continuous variables
Sourcefn mean_absolute_error(&self, compare_to: &T) -> Result<F>
fn mean_absolute_error(&self, compare_to: &T) -> Result<F>
Mean error between two continuous variables
Sourcefn mean_squared_error(&self, compare_to: &T) -> Result<F>
fn mean_squared_error(&self, compare_to: &T) -> Result<F>
Mean squared error between two continuous variables
Sourcefn mean_squared_log_error(&self, compare_to: &T) -> Result<F>
fn mean_squared_log_error(&self, compare_to: &T) -> Result<F>
Mean squared log error between two continuous variables
Sourcefn median_absolute_error(&self, compare_to: &T) -> Result<F>
fn median_absolute_error(&self, compare_to: &T) -> Result<F>
Median absolute error between two continuous variables
Sourcefn mean_absolute_percentage_error(&self, compare_to: &T) -> Result<F>
fn mean_absolute_percentage_error(&self, compare_to: &T) -> Result<F>
Mean absolute percentage error between two continuous variables MAPE = 1/N * SUM(abs((y_hat - y) / y))
Sourcefn r2(&self, compare_to: &T) -> Result<F>
fn r2(&self, compare_to: &T) -> Result<F>
R squared coefficient, is the proportion of the variance in the dependent variable that is predictable from the independent variable
Sourcefn explained_variance(&self, compare_to: &T) -> Result<F>
fn explained_variance(&self, compare_to: &T) -> Result<F>
Same as R-Squared but with biased variance