1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
//! Common metrics for classification
//!
//! Scoring is essential for classification and regression tasks. This module implements
//! common scoring functions like precision, accuracy, recall, f1-score, ROC and ROC
//! Aread-Under-Curve.
use std::collections::HashMap;
use std::fmt;

use ndarray::prelude::*;
use ndarray::Data;

use crate::dataset::AsSingleTargets;
use crate::dataset::{AsTargets, DatasetBase, Label, Labels, Pr, Records};
use crate::error::{Error, Result};

/// Return tuple of class index for each element of prediction and ground_truth
fn map_prediction_to_idx<L: Label>(
    prediction: &[L],
    ground_truth: &[L],
    classes: &[L],
) -> Vec<Option<(usize, usize)>> {
    // create a map from class label to index
    let set = classes
        .iter()
        .enumerate()
        .map(|(a, b)| (b, a))
        .collect::<HashMap<_, usize>>();

    // indices for every prediction
    prediction
        .iter()
        .zip(ground_truth.iter())
        .map(|(a, b)| set.get(&a).and_then(|x| set.get(&b).map(|y| (*x, *y))))
        .collect::<Vec<Option<_>>>()
}

/// Confusion matrix for multi-label evaluation
///
/// A confusion matrix shows predictions in a matrix, where rows correspond to target and columns
/// to predicted. Diagonal entries are correct predictions, and everything off the
/// diagonal is a miss-classification.
#[derive(Clone, PartialEq)]
pub struct ConfusionMatrix<A> {
    matrix: Array2<f32>,
    members: Array1<A>,
}

impl<A> ConfusionMatrix<A> {
    fn is_binary(&self) -> bool {
        self.matrix.shape() == [2, 2]
    }

    /// Precision score, the number of correct classifications for the first class divided by total
    /// number of items in the first class
    ///
    /// ## Binary confusion matrix
    /// For binary confusion matrices (2x2 size) the precision score is calculated for the first
    /// label and corresponds to
    ///
    /// ```ignore
    /// true-label-1 / (true-label-1 + false-label-1)
    /// ```
    ///
    /// ## Multilabel confusion matrix
    /// For multilabel confusion matrices, the precision score is averaged over all classes
    /// (also known as `macro` averaging) A more precise controlled evaluation can be done by first splitting the confusion matrix with `split_one_vs_all` and then applying a different averaging scheme.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use linfa::prelude::*;
    /// use ndarray::array;
    ///
    /// // create dummy classes 0 and 1
    /// let prediction = array![0, 1, 1, 1, 0, 0, 1];
    /// let ground_truth = array![0, 0, 1, 0, 1, 0, 1];
    ///
    /// // create confusion matrix
    /// let cm = prediction.confusion_matrix(&ground_truth).unwrap();
    ///
    /// // print precision for label 0
    /// println!("{:?}", cm.precision());
    /// ```
    pub fn precision(&self) -> f32 {
        if self.is_binary() {
            self.matrix[(0, 0)] / (self.matrix[(0, 0)] + self.matrix[(1, 0)])
        } else {
            self.split_one_vs_all()
                .into_iter()
                .map(|x| x.precision())
                .sum::<f32>()
                / self.members.len() as f32
        }
    }

    /// Recall score, the number of correct classifications in the first class divided by the
    /// number of classifications in the first class
    ///
    ///
    /// ## Binary confusion matrix
    /// For binary confusion matrices (2x2 size) the recall score is calculated for the first label
    /// and corresponds to
    ///
    /// ```ignore
    /// true-label-1 / (true-label-1 + false-label-2)
    /// ```
    ///
    /// ## Multilabel confusion matrix
    /// For multilabel confusion matrices the recall score is averaged over all classes (also known
    /// as `macro` averaging). A more precise evaluation can be achieved by first splitting the
    /// confusion matrix with `split_one_vs_all` and then applying a different averaging scheme.
    ///
    /// # Example
    ///
    /// ```rust
    /// use linfa::prelude::*;
    /// use ndarray::array;
    ///
    /// // create dummy classes 0 and 1
    /// let prediction = array![0, 1, 1, 1, 0, 0, 1];
    /// let ground_truth = array![0, 0, 1, 0, 1, 0, 1];
    ///
    /// // create confusion matrix
    /// let cm = prediction.confusion_matrix(&ground_truth).unwrap();
    ///
    /// // print recall for label 0
    /// println!("{:?}", cm.recall());
    /// ```
    pub fn recall(&self) -> f32 {
        if self.is_binary() {
            self.matrix[(0, 0)] / (self.matrix[(0, 0)] + self.matrix[(0, 1)])
        } else {
            self.split_one_vs_all()
                .into_iter()
                .map(|x| x.recall())
                .sum::<f32>()
                / self.members.len() as f32
        }
    }

    /// Accuracy score
    ///
    /// The accuracy score is the ratio of correct classifications to all classifications. For
    /// multi-label confusion matrices this is the sum of diagonal entries to the sum of all
    /// entries.
    pub fn accuracy(&self) -> f32 {
        self.matrix.diag().sum() / self.matrix.sum()
    }

    /// F-beta-score
    ///
    /// The F-beta-score averages between precision and recall. It is defined as
    /// ```ignore
    /// (1.0 + b*b) * (precision * recall) / (b * b * precision + recall)
    /// ```
    pub fn f_score(&self, beta: f32) -> f32 {
        let sb = beta * beta;
        let p = self.precision();
        let r = self.recall();

        (1. + sb) * (p * r) / (sb * p + r)
    }

    /// F1-score, this is the F-beta-score for beta=1
    pub fn f1_score(&self) -> f32 {
        self.f_score(1.0)
    }

    /// Matthew Correlation Coefficients
    ///
    /// Estimates the normalized cross-correlation between target and predicted variable. The MCC
    /// is more significant than precision or recall, because all four quadrants are included in
    /// the evaluation. A generalized evaluation for multiple labels is also included.
    pub fn mcc(&self) -> f32 {
        let mut cov_xy = 0.0;
        for k in 0..self.members.len() {
            for l in 0..self.members.len() {
                for m in 0..self.members.len() {
                    cov_xy += self.matrix[(k, k)] * self.matrix[(l, m)];
                    cov_xy -= self.matrix[(k, l)] * self.matrix[(m, k)];
                }
            }
        }

        let sum = self.matrix.sum();
        let sum_over_cols = self.matrix.sum_axis(Axis(0));
        let sum_over_rows = self.matrix.sum_axis(Axis(1));

        let mut cov_xx: f32 = 0.0;
        let mut cov_yy: f32 = 0.0;
        for k in 0..self.members.len() {
            cov_xx += sum_over_rows[k] * (sum - sum_over_rows[k]);
            cov_yy += sum_over_cols[k] * (sum - sum_over_cols[k]);
        }

        cov_xy / cov_xx.sqrt() / cov_yy.sqrt()
    }

    /// Split confusion matrix in N one-vs-all binary confusion matrices
    pub fn split_one_vs_all(&self) -> Vec<ConfusionMatrix<bool>> {
        let sum = self.matrix.sum();

        (0..self.members.len())
            .map(|i| {
                let tp = self.matrix[(i, i)];
                let fp = self.matrix.row(i).sum() - tp;
                let _fn = self.matrix.column(i).sum() - tp;
                let tn = sum - tp - fp - _fn;

                ConfusionMatrix {
                    matrix: array![[tp, fp], [_fn, tn]],
                    members: Array1::from(vec![true, false]),
                }
            })
            .collect()
    }

    /// Split confusion matrix in N*(N-1)/2 one-vs-one binary confusion matrices
    pub fn split_one_vs_one(&self) -> Vec<ConfusionMatrix<bool>> {
        let n = self.members.len();
        let mut cms = Vec::with_capacity(n * (n - 1) / 2);

        for i in 0..n {
            for j in i..n {
                let tp = self.matrix[(i, i)];
                let fp = self.matrix[(i, j)];
                let _fn = self.matrix[(j, i)];
                let tn = self.matrix[(j, j)];

                cms.push(ConfusionMatrix {
                    matrix: array![[tp, fp], [_fn, tn]],
                    members: Array1::from(vec![true, false]),
                });
            }
        }

        cms
    }
}

/// Print a confusion matrix
impl<A: fmt::Display> fmt::Debug for ConfusionMatrix<A> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let len = self.matrix.len_of(Axis(0));
        writeln!(f)?;
        write!(f, "{: <10}", "classes")?;
        for i in 0..len {
            write!(f, " | {: <10}", self.members[i])?;
        }
        writeln!(f)?;

        for i in 0..len {
            write!(f, "{: <10}", self.members[i])?;

            for j in 0..len {
                write!(f, " | {: <10}", self.matrix[(i, j)])?;
            }
            writeln!(f)?;
        }

        Ok(())
    }
}

/// Classification for multi-label evaluation
///
/// Contains a routine to calculate the confusion matrix, all other scores are derived form it.
pub trait ToConfusionMatrix<A, T> {
    fn confusion_matrix(&self, ground_truth: T) -> Result<ConfusionMatrix<A>>;
}

impl<L: Label, S, T> ToConfusionMatrix<L, ArrayBase<S, Ix1>> for T
where
    S: Data<Elem = L>,
    T: AsSingleTargets<Elem = L> + Labels<Elem = L>,
{
    fn confusion_matrix(&self, ground_truth: ArrayBase<S, Ix1>) -> Result<ConfusionMatrix<L>> {
        self.confusion_matrix(&ground_truth)
    }
}

impl<L: Label, S, T> ToConfusionMatrix<L, &ArrayBase<S, Ix1>> for T
where
    S: Data<Elem = L>,
    T: AsSingleTargets<Elem = L> + Labels<Elem = L>,
{
    fn confusion_matrix(&self, ground_truth: &ArrayBase<S, Ix1>) -> Result<ConfusionMatrix<L>> {
        let targets = self.as_single_targets();
        if targets.len() != ground_truth.len() {
            return Err(Error::MismatchedShapes(targets.len(), ground_truth.len()));
        }

        let classes = self.labels();

        let indices = map_prediction_to_idx(
            targets.as_slice().unwrap(),
            ground_truth.as_slice().unwrap(),
            &classes,
        );

        // count each index tuple in the confusion matrix
        let mut confusion_matrix = Array2::zeros((classes.len(), classes.len()));
        for (i1, i2) in indices.into_iter().flatten() {
            confusion_matrix[(i1, i2)] += 1.0;
        }

        Ok(ConfusionMatrix {
            matrix: confusion_matrix,
            members: Array1::from(classes),
        })
    }
}

impl<L: Label, R, R2, T, T2> ToConfusionMatrix<L, &DatasetBase<R, T>> for DatasetBase<R2, T2>
where
    R: Records,
    R2: Records,
    T: AsSingleTargets<Elem = L>,
    T2: AsSingleTargets<Elem = L> + Labels<Elem = L>,
{
    fn confusion_matrix(&self, ground_truth: &DatasetBase<R, T>) -> Result<ConfusionMatrix<L>> {
        self.targets().confusion_matrix(ground_truth.as_targets())
    }
}

impl<L: Label, S: Data<Elem = L>, T: AsSingleTargets<Elem = L> + Labels<Elem = L>, R: Records>
    ToConfusionMatrix<L, &DatasetBase<R, T>> for ArrayBase<S, Ix1>
{
    fn confusion_matrix(&self, ground_truth: &DatasetBase<R, T>) -> Result<ConfusionMatrix<L>> {
        ground_truth.confusion_matrix(self.view())
    }
}

/*
impl<A: Clone + Ord + Hash, D: Data<Elem = A>> IntoConfusionMatrix<A> for ArrayBase<D, Ix1> {
    fn into_confusion_matrix<'a, T>(self, ground_truth: T) -> ConfusionMatrix<A>
    where
        A: 'a,
        T: IntoNdProducer<Item = &'a A, Dim = Ix1, Output = ArrayView1<'a, A>>,
    {
        let tmp = ModifiedPrediction {
            prediction: self,
            classes: Vec::new(),
            weights: Vec::new(),
        };

        tmp.into_confusion_matrix(ground_truth)
    }
}

impl<A: Clone + Ord + Hash> IntoConfusionMatrix<A> for Vec<A> {
    fn into_confusion_matrix<'a, T>(self, ground_truth: T) -> ConfusionMatrix<A>
    where
        A: 'a,
        T: IntoNdProducer<Item = &'a A, Dim = Ix1, Output = ArrayView1<'a, A>>,
    {
        let tmp = ModifiedPrediction {
            prediction: Array1::from(self),
            classes: Vec::new(),
            weights: Vec::new(),
        };

        tmp.into_confusion_matrix(ground_truth)
    }
}*/

/*
 * TODO: specialization requires unstable Rust
impl IntoConfusionMatrix<bool, OwnedRepr<bool>> for Array1<bool> {
    fn confusion_matrix(self, ground_truth: &Array1<bool>) -> ConfusionMatrix<bool> {
        let mut confusion_matrix = Array2::zeros((2, 2));
        for result in self.iter().zip(ground_truth.iter()) {
            match result {
                (true, true) => confusion_matrix[(0, 0)] += 1,
                (true, false) => confusion_matrix[(1, 0)] += 1,
                (false, true) => confusion_matrix[(0, 1)] += 1,
                (false, false) => confusion_matrix[(1, 1)] += 1
            }
        }

        ConfusionMatrix {
            matrix: confusion_matrix,
            members: Array::from(vec![true, false])
        }
    }
}*/

/// Integration using the trapezoidal rule.
fn trapezoidal<A: NdFloat>(vals: &[(A, A)]) -> A {
    let mut prev_x = vals[0].0;
    let mut prev_y = vals[0].1;
    let mut integral = A::zero();

    for (x, y) in vals.iter().skip(1) {
        integral += (*x - prev_x) * (prev_y + *y) / A::from(2.0).unwrap();
        prev_x = *x;
        prev_y = *y;
    }
    integral
}

/// A Receiver Operating Characteristic for binary-label classification
///
/// The ROC curve gives insight about the seperability of a binary classification task.
#[derive(Debug, Clone, PartialEq)]
pub struct ReceiverOperatingCharacteristic {
    curve: Vec<(f32, f32)>,
    thresholds: Vec<f32>,
}

impl ReceiverOperatingCharacteristic {
    /// Returns the true-positive, false-positive curve
    pub fn get_curve(&self) -> Vec<(f32, f32)> {
        self.curve.clone()
    }

    /// Returns the threshold corresponding to each point
    pub fn get_thresholds(&self) -> Vec<f32> {
        self.thresholds.clone()
    }

    /// Returns the Area-Under-Curve metric
    pub fn area_under_curve(&self) -> f32 {
        trapezoidal(&self.curve)
    }
}

/// Classification for binary-labels
///
/// This contains Receiver-Operating-Characterstics curves and log loss as those only work for binary
/// classification tasks.
pub trait BinaryClassification<T> {
    fn roc(&self, y: T) -> Result<ReceiverOperatingCharacteristic>;
    fn log_loss(&self, y: T) -> Result<f32>;
}

impl BinaryClassification<&[bool]> for &[Pr] {
    fn roc(&self, y: &[bool]) -> Result<ReceiverOperatingCharacteristic> {
        let mut tuples = self
            .iter()
            .zip(y.iter())
            .filter_map(|(a, b)| if **a >= 0.0 { Some((*a, *b)) } else { None })
            .collect::<Vec<(Pr, bool)>>();

        tuples.sort_unstable_by(&|a: &(Pr, _), b: &(Pr, _)| match a.0.partial_cmp(&b.0) {
            Some(ord) => ord,
            None => unreachable!(),
        });

        let (mut tp, mut fp) = (0.0, 0.0);
        let mut tps_fps = Vec::new();
        let mut thresholds = Vec::new();
        let mut s0 = 0.0;

        for (s, t) in tuples {
            if (*s - s0).abs() > 1e-10 {
                tps_fps.push((tp, fp));
                thresholds.push(s);
                s0 = *s;
            }

            if t {
                tp += 1.0;
            } else {
                fp += 1.0;
            }
        }
        tps_fps.push((tp, fp));

        let (max_tp, max_fp) = (tp, fp);
        for (tp, fp) in &mut tps_fps {
            *tp /= max_tp;
            *fp /= max_fp;
        }

        Ok(ReceiverOperatingCharacteristic {
            curve: tps_fps,
            thresholds: thresholds.into_iter().map(|x| *x).collect(),
        })
    }

    fn log_loss(&self, y: &[bool]) -> Result<f32> {
        let probabilities = aview1(self);
        probabilities.log_loss(y)
    }
}

impl<D: Data<Elem = Pr>> BinaryClassification<&[bool]> for ArrayBase<D, Ix1> {
    fn roc(&self, y: &[bool]) -> Result<ReceiverOperatingCharacteristic> {
        self.as_slice().unwrap().roc(y)
    }

    fn log_loss(&self, y: &[bool]) -> Result<f32> {
        assert_eq!(
            self.len(),
            y.len(),
            "The number of predicted points must match the length of target."
        );
        let len = self.len();
        if len == 0 {
            Err(Error::NotEnoughSamples)
        } else {
            let sum: f32 = self
                .iter()
                .map(|v| (*v).clamp(f32::EPSILON, 1. - f32::EPSILON))
                .zip(y.iter())
                .map(|(a, b)| if *b { -a.ln() } else { -(1. - a).ln() })
                .sum();
            Ok(sum / len as f32)
        }
    }
}

impl<R: Records, R2: Records, T: AsSingleTargets<Elem = bool>, T2: AsSingleTargets<Elem = Pr>>
    BinaryClassification<&DatasetBase<R, T>> for DatasetBase<R2, T2>
{
    fn roc(&self, y: &DatasetBase<R, T>) -> Result<ReceiverOperatingCharacteristic> {
        let targets = self.as_targets();
        let targets = targets.as_slice().unwrap();
        let y_targets = y.as_targets();
        let y_targets = y_targets.as_slice().unwrap();

        targets.roc(y_targets)
    }

    /// Log loss of the probabilities of the binary target
    fn log_loss(&self, y: &DatasetBase<R, T>) -> Result<f32> {
        let probabilities = self.as_single_targets();
        let y_targets = y.as_targets();
        let y_targets = y_targets.as_slice().unwrap();

        probabilities.log_loss(y_targets)
    }
}

#[cfg(test)]
mod tests {
    use super::{BinaryClassification, ConfusionMatrix, ToConfusionMatrix};
    use super::{Label, Pr};
    use approx::assert_abs_diff_eq;
    use ndarray::{array, Array1, Array2, ArrayView1};
    use rand::{distributions::Uniform, rngs::SmallRng, Rng, SeedableRng};
    use std::collections::HashMap;

    fn get_labels_map<L: Label>(cm: &ConfusionMatrix<L>) -> HashMap<L, usize> {
        cm.members
            .iter()
            .enumerate()
            .map(|(index, label)| (label.clone(), index))
            .collect()
    }

    // confusion matrices use hash sets for the labels to pair so
    // the order of the rows of the matrices is not constant.
    // we can transform the index->member mapping in `cm.members`
    // into a member->index mapping to check each element independently
    fn assert_cm_eq<L: Label>(cm: &ConfusionMatrix<L>, expected: &Array2<f32>, labels: &Array1<L>) {
        let map = get_labels_map(cm);
        for ((row, column), value) in expected.indexed_iter().map(|((r, c), v)| {
            (
                (*map.get(&labels[r]).unwrap(), *map.get(&labels[c]).unwrap()),
                v,
            )
        }) {
            let cm_value = *cm.matrix.get((row, column)).unwrap();
            assert_abs_diff_eq!(cm_value, value);
        }
    }

    fn assert_split_eq<L: Label, C: Fn(&ConfusionMatrix<bool>) -> f32>(
        cm: &ConfusionMatrix<L>,
        eval: C,
        expected: &Array1<f32>,
        labels: &Array1<L>,
    ) {
        let map = get_labels_map(cm);
        let evals = cm
            .split_one_vs_all()
            .into_iter()
            .map(|x| eval(&x))
            .collect::<Vec<_>>();
        for (index, value) in expected
            .indexed_iter()
            .map(|(i, v)| (*map.get(&labels[i]).unwrap(), v))
        {
            let evals_value = *evals.get(index).unwrap();
            assert_abs_diff_eq!(evals_value, value);
        }
    }

    #[test]
    fn test_confusion_matrix() {
        let ground_truth = ArrayView1::from(&[1, 1, 0, 1, 0, 1]);
        let predicted = ArrayView1::from(&[0, 1, 0, 1, 0, 1]);

        let cm = predicted.confusion_matrix(ground_truth).unwrap();

        let labels = array![0, 1];
        let expected = array![[2., 1.], [0., 3.]];

        assert_cm_eq(&cm, &expected, &labels);
    }

    #[test]
    fn test_cm_metrices() {
        let ground_truth = Array1::from(vec![1, 1, 0, 1, 0, 1]);
        let predicted = Array1::from(vec![0, 1, 0, 1, 0, 1]);

        let x = predicted.confusion_matrix(ground_truth).unwrap();

        let labels = array![0, 1];

        assert_abs_diff_eq!(x.accuracy(), 5.0 / 6.0_f32);
        assert_abs_diff_eq!(
            x.mcc(),
            (2. * 3. - 1. * 0.) / (2.0f32 * 3. * 3. * 4.).sqrt()
        );

        assert_split_eq(
            &x,
            ConfusionMatrix::precision,
            &array![1.0, 3. / 4.],
            &labels,
        );
        assert_split_eq(
            &x,
            ConfusionMatrix::recall,
            &array![2.0 / 3.0, 1.0],
            &labels,
        );
        assert_split_eq(
            &x,
            ConfusionMatrix::f1_score,
            &array![4.0 / 5.0, 6.0 / 7.0],
            &labels,
        );
    }

    #[test]
    fn test_roc_curve() {
        let predicted = ArrayView1::from(&[0.1, 0.3, 0.5, 0.7, 0.8, 0.9]).mapv(Pr::new);

        let groundtruth = vec![false, true, false, true, true, true];

        let result = &[
            (0.0, 0.0),  // start
            (0.0, 0.5),  // first item is target=false
            (0.25, 0.5), // second item is target=true, but obviously false
            (0.25, 1.0), // third item is target=false, we reach max false-positive, because all other labels are positive
            (0.5, 1.0),  // the remaining three are target=true
            (0.75, 1.0),
            (1., 1.),
        ];

        let roc = predicted.roc(&groundtruth).unwrap();
        assert_eq!(roc.get_curve(), result);
    }

    #[test]
    fn test_roc_auc() {
        let mut rng = SmallRng::seed_from_u64(42);
        let predicted = Array1::linspace(0.0, 1.0, 1000).mapv(Pr::new);

        let range = Uniform::new(0, 2);

        // randomly sample ground truth
        let ground_truth = (0..1000)
            .map(|_| rng.sample(range) == 1)
            .collect::<Vec<_>>();

        // ROC Area-Under-Curve should be approximately 0.5
        let roc = predicted.roc(&ground_truth).unwrap();
        assert!((roc.area_under_curve() - 0.5) < 0.04);
    }

    #[test]
    fn split_one_vs_all() {
        let ground_truth = array![0, 2, 3, 0, 1, 2, 1, 2, 3, 2];
        let predicted = array![0, 3, 2, 0, 1, 1, 1, 3, 2, 3];

        // create a confusion matrix
        let cm = predicted.confusion_matrix(ground_truth).unwrap();

        let labels = array![0, 1, 2, 3];
        let bin_labels = array![true, false];
        let map = get_labels_map(&cm);

        // split four class confusion matrix into 4 binary confusion matrix
        let n_cm = cm.split_one_vs_all();

        let result = &[
            array![[2., 0.], [0., 8.]], // no misclassification for label=0
            array![[2., 1.], [0., 7.]], // one false-positive for label=1
            array![[0., 2.], [4., 4.]], // two false-positive and four false-negative for label=2
            array![[0., 3.], [2., 5.]], // three false-positive and two false-negative for label=3
        ];

        for (r, x) in result
            .iter()
            .zip(labels.iter())
            .map(|(r, l)| (r, n_cm.get(*map.get(l).unwrap()).unwrap()))
        {
            assert_cm_eq(x, r, &bin_labels);
        }
    }

    #[test]
    fn log_loss() {
        let ground_truth = &[false, false, false, false, true, true, true, true, true];
        let predicted =
            ArrayView1::from(&[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]).mapv(Pr::new);

        let logloss = predicted.log_loss(ground_truth).unwrap();
        assert_abs_diff_eq!(logloss, 0.34279516);
    }

    #[test]
    #[should_panic]
    fn log_loss_empty() {
        let ground_truth = &[];
        let predicted = ArrayView1::from(&[]).mapv(Pr::new);
        predicted.log_loss(ground_truth).unwrap();
    }

    #[test]
    #[should_panic]
    fn log_loss_with_different_lengths() {
        let ground_truth = &[false, false, false, false, true, true, true, true];
        let predicted =
            ArrayView1::from(&[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]).mapv(Pr::new);
        predicted.log_loss(ground_truth).unwrap();
    }
}